|
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.
Este aviso fue puesto el 22 de octubre de 2012.
|
Movimiento por convección
Convección aire en un hornillo
La
convección es una de las tres formas de
transferencia de calor (conducción, convección y radiación) que transporta el calor entre zonas con diferentes
temperaturas. La convección se produce únicamente por medio de materiales, la evaporación del agua o fluidos. La convección en sí es el transporte de calor por medio del movimiento del fluido. Por ejemplo, al calentar el agua en una cacerola, el agua que entra en contacto con la base de la cacerola asciende al calentarse, mientras que el agua de la superficie desciende por los lados al enfriarse, y ocupa el lugar que dejó la porción caliente.
La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscópicos de porciones calientes y frías de un
gas o un
líquido. Incluye también el intercambio de
energía entre una superficie
sólida y un
fluido o por medio de una
bomba, un
ventilador u otro dispositivo mecánico (convección mecánica, forzada o asistida).
En la transferencia de calor libre o natural, un fluido es más caliente o más frío. El contacto con una
superficie sólida, causa una circulación debido a las diferencias de densidades que resultan del gradiente de temperaturas en el fluido.
siendo:
- , el coeficiente de convección;
- , el área del cuerpo en contacto con el fluido;
- , la temperatura en la superficie del cuerpo;
- , la temperatura del fluido lejos del cuerpo.
La convección en la atmósfera[editar]
La convección en la
atmósfera terrestre involucra la transferencia de enormes cantidades del calor absorbido por el agua. Forma nubes de gran desarrollo vertical (por ejemplo,
cumulus congestus y, sobre todo,
cumulonimbos, que son los tipos de nubes que alcanzan mayor desarrollo vertical). Estas nubes son las típicas portadoras de tormentas eléctricas y de grandes precipitaciones. Al alcanzar una altura muy grande (por ejemplo, unos 12 o 14 km) y enfriarse bruscamente por la baja
temperatura atmosférica a dicha altura, pueden producir tormentas eléctricas, granizadas e intensas lluvias, ya que las gotas de lluvia van aumentando de tamaño al ascender violentamente y luego se precipitan hacia el suelo bien sea en estado líquido o en estado sólido. Pueden tener forma de un hongo asimétrico de gran tamaño; y a veces se forma en este tipo de nubes una estela que semeja una especie de yunque (
anvil's head, como se conoce en inglés).
El proceso que origina la convección en el seno de la atmósfera terrestre es sumamente importante y genera una serie de fenómenos fundamentales en la explicación de los
vientos y en la formación de
nubes,
vaguadas,
ciclones,
anticiclones,
precipitaciones, etc. Todos los procesos y mecanismos de convección del calor atmosférico obedecen a las leyes físicas de la
termodinámica. De estos procesos es fundamental el que explica el ciclo del agua en la naturaleza o
ciclo hidrológico. Casi todos los fenómenos antes nombrados tienen que ver con este último mecanismo. La
subsidencia es el fenómeno inverso a la convección, por el cual, el aire a gran altura se enfría considerablemente y forma una zona
anticiclónica que desciende por su mayor densidad trayendo hacia la
superficie terrestre aire frío y seco, que puede dar origen a
remolinos de polvo y hasta
tornados cuando se ponen en contacto con una zona de convección.
También se denomina
ciclo hidrológico (o ciclo del agua) al recorrido del agua en la atmósfera por la capacidad que tiene el agua de absorber
calor y cederlo gracias a la capacidad que tiene de transformarse de un estado físico a otro. A grandes rasgos, el ciclo hidrológico funciona de la siguiente manera: los rayos solares calientan las superficies de las aguas marinas y terrestres las cuales, al absorber ese calor, pasan del estado líquido al gaseoso en forma de
vapor de agua. El vapor asciende hasta cierta altura y al hacerlo, pierde calor, se condensa y forma las nubes, que están constituidas por gotas de agua muy pequeñas que se mantienen en suspensión a determinada altura. Cuando esta condensación se acelera, por el propio ascenso de la masa de nubes (convección), se forman nubes de mayor desarrollo vertical, con lo que las gotas aumentan de tamaño y forman las precipitaciones, que pueden ser tanto sólidas (nieve, granizo) como acuosas (lluvia), dependiendo de la temperatura. Estas precipitaciones pueden caer tanto en el mar como en las tierras emergidas. Por último, parte del agua que se precipita en los continentes e islas pasa de nuevo a la atmósfera por evaporación o produce corrientes fluviales que llevan de nuevo gran parte de las aguas terrestres a los mares y océanos, con lo que se cierra el ciclo, el cual vuelve a repetirse.
Comportamiento de un fluido cualquiera en la transferencia de calor[editar]
Cuando un fluido cede calor sus moléculas se desaceleran por lo cual su temperatura disminuye y su densidad aumenta siendo atraídas sus moléculas por la gravedad de la tierra.
Cuando el fluido absorbe calor sus moléculas se aceleran por lo cual su temperatura aumenta y su densidad disminuye, lo que lo hace más liviano.
El fluido más frío tiende a bajar y ocupa el nivel más bajo de la vertical y los fluidos más calientes son desplazados al nivel más alto, creándose así los vientos de la tierra.
La transferencia térmica convectiva consiste en el contacto del fluido con una temperatura inicial con otro elemento o material con una temperatura diferente En función de la variación de las temperaturas, variarán las cargas energéticas moleculares del fluido, y los elementos interactuantes del sistema realizarán un trabajo, donde el que tiene mayor energía o temperatura se la cederá al que tiene menos temperatura. Esta transferencia térmica se realizará hasta que los dos tengan igual temperatura; mientras se realiza el proceso las moléculas con menor densidad tenderán a subir y las de mayor densidad bajarán de nivel. Las moléculas que se encuentran en las capas inferiores aumentan su temperatura.
Intercambiadores de calor[editar]
Un
intercambiador de calor es un dispositivo construido para intercambiar eficientemente el calor de un fluido a otro, tanto si los fluidos están separados por una pared sólida para prevenir su mezcla, como si están en contacto directo. Los cambiadores de calor son muy usados en
refrigeración,
acondicionamiento de aire,
calefacción,
producción de energía, y procesamiento químico. Un ejemplo básico de un cambiador de calor es el radiador de un coche, en el que el líquido de radiador caliente es enfriado por el flujo de aire sobre la superficie del radiador.
Las disposiciones más comunes de cambiadores de calor son,
flujo paralelo,
contracorriente y
flujo cruzado. En el flujo paralelo, ambos fluidos se mueven en la misma dirección durante la transmisión de calor; en contracorriente, los fluidos se mueven en sentido contrario y en flujo cruzado los fluidos se mueven formando un
ángulo recto entre ellos. Los tipos más comunes de cambiadores de calor son, de carcasa y tubos, de doble tubo, tubo extruido con aletas, tubo de aleta espiral, tubo en U, y de placas. Puede obtenerse más información sobre los flujos y configuraciones de los cambiadores de calor en el artículo intercambiador de calor.
Cuando los ingenieros calculan la transferencia teórica de calor en un intercambiador, deben lidiar con el hecho de que el gradiente de temperaturas entre ambos fluidos varía con la posición. Para solucionar el problema en sistemas simples, suele usarse la
diferencia de temperaturas media logarítmica (DTML) para determinar estadísticamente un valor medio de la temperatura. En sistemas más complejos, el conocimiento directo de la DTML no es posible y en su lugar puede usarse el método de
número de unidades de transferencia (NUT).
No hay comentarios:
Publicar un comentario